Contribution of the highly conserved EaeH surface protein to enterotoxigenic Escherichia coli pathogenesis.
نویسندگان
چکیده
Enterotoxigenic Escherichia coli (ETEC) strains are among the most common causes of diarrheal illness worldwide. These pathogens disproportionately afflict children in developing countries, where they cause substantial morbidity and are responsible for hundreds of thousands of deaths each year. Although these organisms are important targets for enteric vaccines, most development efforts to date have centered on a subset of plasmid-encoded fimbrial adhesins known as colonization factors and heat-labile toxin (LT). Emerging data suggest that ETEC undergoes considerable changes in its surface architecture, sequentially deploying a number of putative adhesins during its interactions with the host. We demonstrate here that one putative highly conserved, chromosomally encoded adhesin, EaeH, engages the surfaces of intestinal epithelial cells and contributes to bacterial adhesion, LT delivery, and colonization of the small intestine.
منابع مشابه
Immunogenicity of a Fusion Protein Comprising Coli Surface Antigen 3 and Labile B Subunit of Enterotoxigenic Escherichia coli
Background: Enterotoxigenic Escherichia coli (ETEC) strains are the major causes of diarrheal disease in humans and animals. Colonization factors and enterotoxins are the major virulence factors in ETEC pathogenesis. For the broad-spectrum protection against ETEC, one could focus on colonization factors and non-toxic heat labile as a vaccine candidate. Methods: A fusion protein is composed of a...
متن کاملEnterotoxigenic Escherichia coli infection induces tight junction proteins expression in mice
Enterotoxigenic Escherichia coli (ETEC) causes diarrhea in travelers, young children and piglets, but the precise pathogenesis of ETEC induced diarrhea is not fully known. Recent investigations have shown that tight junction (TJ) proteins and aquaporin 3 (AQP 3) are contributing factors in bacterial diarrhea. In this study, using immunoblotting and immunohistochemistry analyses, we found that E...
متن کاملCloning and evaluation of gene expression and purification of gene encoding recombinant protein containing binding subunit of coli surface antigens CS1 and CS2 from Enterotoxigenic Escherichia coli
Background & Objective: Enterotoxigenic Escherichia coli (ETEC) is a major causative agent of diarrhea. Enterotoxins and the colonization factors (CFs) are major virulence factors in ETEC infections. The bacterium binds to the intestinal epithelial cell surface through colonization factors and produces enterotoxins that cause excessive fluid and electrolyte secretion in the lumen of the intesti...
متن کاملAn LTB-entrapped protein in PLGA nanoparticles preserves against enterotoxin of enterotoxigenic Escherichia coli
Objective(s): Enterotoxigenic Escherichia coli (ETEC) is known as the most common bacterial causes of diarrheal diseases related to morbidity and mortality. Heat-labile enterotoxin (LT) is a part of major virulence factors in ETEC pathogenesis. Antigen entrapment into nanoparticles (NPs) can protect them and enhance their immunogenicity.Materials and Methods: In the present study, recombinant L...
متن کاملTranscriptional modulation of enterotoxigenic Escherichia coli virulence genes in response to epithelial cell interactions.
Enterotoxigenic Escherichia coli (ETEC) strains are a leading cause of morbidity and mortality due to diarrheal illness in developing countries. There is currently no effective vaccine against these important pathogens. Because genes modulated by pathogen-host interactions potentially encode putative vaccine targets, we investigated changes in gene expression and surface morphology of ETEC upon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 82 9 شماره
صفحات -
تاریخ انتشار 2014